Love makes smell blind: mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons
نویسندگان
چکیده
In Drosophila, the male sex pheromone cis-vaccenyl acetate (cVA) elicits aggregation and courtship, through the odorant receptor Or67d. Long-lasting exposure to cVA suppresses male courtship, via a second channel, Or65a. In females, the role of Or65a has not been studied. We show that, shortly after mating, Drosophila females are no longer attracted to cVA and that activation of olfactory sensory neurons (OSNs) expressing Or65a generates this behavioral switch: when silencing Or65a, mated females remain responsive to cVA. Neurons expressing Or67d converge into the DA1 glomerulus in the antennal lobe, where they synapse onto projection neurons (PNs), that connect to higher neural circuits generating the attraction response to cVA. Functional imaging of these PNs shows that the DA1 glomerulus is inhibited by simultaneous activation of Or65a OSNs, which leads to a suppression of the attraction response to cVA. The behavioral role of postmating cVA exposure is substantiated by the observation that matings with starved males, which produce less cVA, do not alter the female response. Moreover, exposure to synthetic cVA abolishes attraction and decreases sexual receptivity in unmated females. Taken together, Or65a mediates an aversive effect of cVA and may accordingly regulate remating, through concurrent behavioral modulation in males and females.
منابع مشابه
Pheromones mediating copulation and attraction in Drosophila.
Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the...
متن کاملGeneralization of Courtship Learning in Drosophila Is Mediated by cis-Vaccenyl Acetate
Reproductive behavior in Drosophila has both stereotyped and plastic components that are driven by age- and sex-specific chemical cues. Males who unsuccessfully court virgin females subsequently avoid females that are of the same age as the trainer. In contrast, males trained with mature mated females associate volatile appetitive and aversive pheromonal cues and learn to suppress courtship of ...
متن کاملActivation of the T1 neuronal circuit is necessary and sufficient to induce sexually dimorphic mating behavior in Drosophila melanogaster.
The molecular and cellular events mediating complex behaviors in animals are largely unknown. Elucidating the circuits underlying behaviors in simple model systems may shed light on how these circuits function. In drosophila, courtship behavior provides a tractable model for studying the underlying basis of innate behavior. The male-specific pheromone 11-cis-vaccenyl acetate (cVA) modulates cou...
متن کاملNeurobiology Select
Understanding how neural circuits in the brain respond to external cues resulting in behavioral changes is an important aspect of neuroscience research. A valuable model in this endeavor is the neural circuitry governing courtship behavior in the fruit fly Drosophila melanogaster. New work provides detailed insights into how factors such as sex pheromones direct the intricate courtship behavior...
متن کاملFeeding regulates sex pheromone attraction and courtship in Drosophila females
In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014